《2019全球碳纤维复合材料市场报告》回顾了世界碳纤维与中国碳纤维发展简史,对比了国外与中国发展史并提出了一些自己的观察与思考。无论世界风云变幻,我们依然对碳纤维复合材料产业充满信心。
目录
01
前言
1.1 世界碳纤维发展简史
1959年日本大阪工业试验所(Osaka Technical Research Institute)的近藤昭男博士(Dr.Akio Shindo)发明了PAN基碳纤维制备技术,全球碳纤维产业整整发展了六十年。“读史明智,鉴往知来”,让我们一起来回顾历史。
1960年代的特点是实验室技术的研发。主要以日本与英国为主导,日本主要有大阪工业试验所、东海碳素公司(Tokai Electrode Mfg. Co.,Ltd.)和日本碳素公司Nippon Carbon co., Ltd.)(他们最早从近藤先生处获得专利授权)、东丽(1961开始研究,之后继承了东海碳素与日本碳素的近十年的研究成果,并在1970获得近藤的专利授权)、三菱、东邦等。英国主要有皇家航空研究所(RAE)、皇家原子能公司(AERA)、考陶尔兹(Courtaulds),罗尔斯-罗伊斯(Rolls-Royce)等;尽管杜邦公司在1942年就推出了腈纶商品,美国人还在与黏胶基较劲,其中美国联碳公司(UCC)公司是代表, 因此美国的聚丙烯晴(PAN)基碳纤维发展晚于英国与日本。
1970年代的特点是工程化技术的研发及应用的开拓。工程化能力实现了150吨/年,期间,英国、美国、日本技术合作频繁。60年代末,英国罗尔斯-罗伊斯的太超前的发动机项目RB-211遇到重挫(后期基于这款发动机形成了著名的瑞达系列),这其中包含了当时碳纤维唯一的应用机会——发动机风扇叶片。英国的碳纤维发展之路一下子被堵死,英国技术只能到美国发展。1972年,美国赫拉克勒斯(Hercules)获得英国皇家航空研究所碳化技术,原丝采用考陶尔兹。日本东丽、东邦、三菱也纷纷与美国相互转让技术。美国与日本在1972年分别用碳纤维制造了高尔夫球杆与钓鱼竿,风靡世界,终于在航空之外,为碳纤维工业婴儿找到了应用乳汁。
1980年代的特点是工业化,产品系列化及应用重大突破。单线产能达到千吨/年,东丽公司基本完成了现有绝大部分产品型号,初期的T300,中期的T800、T1000,末期的M60J。1980年波音公司提出了商用飞机对碳纤维的要求,1982开始采用T300应用在B757、B767及航天飞机上。英国由于缺乏应用的支撑,已经开始转让技术为生,其中包括对北京化工学院及吉林化学公司的两项技术转让,同时期,同样的技术也卖给了印度、俄罗斯与巴西。美国由于日本、英国的技术相互转让,诞生了一个开拓工业碳纤维的厂家,卓尔泰克(ZOLTEK),台塑与美国Hitco公司进行技术合作,开始了中华民族第一个碳纤维工业化时代。
1990年代的特点是并购及争抢市场份额。美国航空材料厂赫氏(Hexcel)并购了美国赫拉克勒斯的碳纤维产业。美国石油巨头阿莫科(AMOCO)整合了大部分美国的碳纤维资源,不光包括美国联碳公司(历史上唯一一家拥有黏胶+沥青+聚丙烯腈基碳纤维),还有东邦与美国塞兰尼斯(Celanese)公司合作的碳纤维资产,这些资产历经转手,在2001年成为了氰特(CYTEC);德国石墨巨头西格里(SGL)在1997年收购了英国考陶尔兹留下的RKcarbon,至此,碳纤维的拓荒牛英国考陶尔兹退出历史舞台(后期被中国蓝星收购活跃了两年)。
2000年代的特点是世界很平静(暗中准备航空航天、风电、汽车的大应用)。世界上发生几起延续90年代的并购事件,除了氰特,西格里从高尔夫球杆厂阿尔笛拉(ALDILA)收购了合资碳纤维的股份,东邦收购了美国福塔菲尔(Fortafil)碳纤维,立足美国。2007年卓尔泰克与风电巨头维斯塔斯(VESTAS)建立合作,将碳纤维用于风电。中国开启了狂飙猛进的碳纤维投资热潮,除了中国,韩国、俄罗斯、土耳其、中国台湾等国家和地区也有不少新进入者,其中依然生存的有韩国晓星,土耳其DOWAKSA。
2010年代的主要特点是应用的急剧扩大及产业进一步整合。首先是号称碳飞机的B787 与A350分别在2011年和2014年完成首架交付,航空航天级碳纤维需求迅猛增加。2010年,宝马与西格里合资在美国建设总产能9,000吨/年的碳纤维工厂,试图将电动汽车彻底轻量化并控制材料源头。(2017年8月,西格里确认收购宝马在汽车碳纤维合资企业的股份,宝马退出碳纤维产业);由于拉挤板成功应用于叶片梁帽,风电巨头维斯塔斯对碳纤维需求空前增长,碳纤维产业内部,加剧了整合,标志性的事件是2014年底,东丽收购了卓尔泰克。国内产业大浪淘沙,强者愈强。
总结世界碳纤维60年的发展历史:既有近藤昭男、威廉姆·瓦特等依然闪耀的科学大师;也有在其中沉沙折戟的众多著名公司,如日本东海、日本碳素、旭化成;英国皇家原子能公司、考陶尔兹、罗尔斯-罗伊斯,BP公司;美国联碳、阿莫科、塞兰尼斯,德国巴斯夫(BASF);更有历经风浪、依然傲立潮头的如东丽、东邦、三菱等公司。
总结成功公司的特点:用30年时间踏实完成实验线-工程线-工业化的道路,注重产业链与应用生态的开发。
1.2.中国碳纤维发展简史
我们对中国碳纤维历史做个简单介绍,对比世界碳纤维的60年发展,我们是57年历史。
1960年代研究起步:最早是1962年中科院长春应用化学所成立以李仍元先生为组长的“聚丙烯腈基碳纤维的研制”课题组,开展基础研究,同期还有沈阳金属研究所张名大先生。
1970年代的特点是举国体制。1970年代初,中科院化学所为了满足国家国防需要,组建了高分子复合材料物理研究室(九室,主任:吴人洁),重点研究“碳纤维连续化制备”和“缩短碳纤维制备周期研究”并取得“四氯化锡”催化等成果;上海合成纤维研究所于1970年代初,开展硫氰酸钠法丙烯腈原丝研究;1972年,化工部吉林化工研究院开展硝酸法研制碳纤维PAN原丝,并在年产3吨装置上取得硝酸一步法制取原丝,供山西燃化所和长春应化所研究碳纤维。山西燃化所用间接预氧化和碳化做研究,并开展连续预氧化和碳化试验。1975年上海合纤所提供给冶金部上海碳素厂2吨原丝研制碳纤维。1975年,11月13~24日在北京,由当时的国防科委主任张爱萍亲自主持召开了一次专题会议,部署国内碳纤维研究工作,由国家计委安排500万元资金做启动费,制定了10年发展规划,组织了原丝、碳化、结构材料、防热材料、测试检验技术5个“攻关组” ,安排20多家研究和企业单位参加,如由吉林化学工业公司研究院、吉林辽源石油化工厂、兰州化学工业公司化纤厂、上海合成纤维研究所采用不同溶剂路线研发聚丙烯腈(PAN)原丝;上海合成纤维研究所、吉林、上海、兰州、抚顺4家碳素厂、山西煤化所、中科院化学所等负责碳化技术研究;另外还安排了织物和材料应用研究。1978年,国家科委恢复,碳纤维转由科委为主管理,从1975至1981年底,中央各部委共投入到承担碳纤维原丝、碳纤维制品等的民用研制的资金约2,600多万元,共建设厂房、试验室20,000多平方米。建成PAN原丝试制动力约50吨/年,碳纤维长丝的试制能力1.5~2.0吨/年。
1980年代的主格调是引进。1984-1985年,国家科委鼓励引进国外先进技术,承诺将给予资金支持。1984年,冶金部支持上海碳素厂试图引进美国Hitco碳化设备,最终被美国国防部否决。1986,吉林化学工业公司经过调研、询价,世界各知名碳纤维公司均囿于“巴黎统筹条约” 限制,不转让技术、不出售设备,只有英国RK公司同意出售大丝束预氧化炉和碳化炉,经过谈判、考察,最终以450万美元购买了生产能力为100吨(12K) /年碳化设备及相应测试仪器,按当时汇率折合2,731万元。1990年经多次试车,预氧化炉尚可,碳化炉始终开不起来。联合国开发计划署(UNDP)和联合国工发组织(UNIDO)批准在北京设置 “碳纤维及其复合材料的开发应用”项目,由北京化工学院和北京航空材料研究所共同承担,总经费共250万美元;北京化工学院经调研,同样除英国RK公司外,没有厂家愿意出售,最后由北京化工学院提供工艺参数,委托英国R K公司加工制造一套10吨级(12K)预氧化、碳化中试线,加工费56万美元。项目历经磨难,几次因“可能有用于军事”而险些遭到封杀,原定3年完成的项目拖了7年,1993年6月才勉强“验收”,之后运行效率不高。
1990年代的特点是停滞。只有吉化公司、吉林碳素厂和北京化工学院还在 “惨淡经营” ,维持小批量供货,其他研发单位基本退出了这一领域,吉林化工研究院硝酸一步法到1998年终止生产。
2000年代的特点是“大干快上”建设碳纤维热潮。师昌绪先生给江泽民主席写了 “关于加速开发高性能碳纤维的请示报告”。“江办” 将报告批转到国家计委和科技部等部门,产生较大影响,对以后的经费落实起到了决定性影响。科技部决定设立碳纤维专项,组成了专家小组,由中科院化学所副所长徐坚任组长,北京化工大学徐樑华任副组长。把碳纤维列入863计划新材料领域,2002年,安徽华皖集团从英国引进AMEC(DR.ROSE)的PAN和CF技术和设备,碳化能力200吨/年。之后我们所有的碳纤维研究机构,如吉林化学(后中石油吉化公司)、北京化工大学、中科院山西煤化所、山东大学、东华大学等一批科技机构,迅速成为工业技术的转让者,整个2000这十年,据不完全统计,上碳纤维项目的超过40家,投资规模超过300亿元人民币,全世界的设备制造厂迎来了中国盛宴。
2010年代的特点是反思“狂飙猛进”和“优胜劣汰”。2012年,笔者与申屠年先生合作发表了《对中国碳纤维及其复合材料产业链发展现状的反思》,同年的香山会议上做报告,得到行业及政府主管部门的广泛认同与共鸣。从产业角度,烧钱开始让人心慌与绝望,出现了很多“烂尾楼”与“僵尸企业”。同时,认真积累技术、踏实工作的企业迎来了春天:光威集团与中简成功上市,中复神鹰扭亏为盈,吉林化纤成为国内原丝龙头,中石化上海石化大展宏图。整个中国碳纤维企业从高峰时超过40家变成今天的十余家企业,市场的优胜劣汰的力量是巨大的。
上述的中国历史素材,均摘抄于国内碳纤维复合材料专家如李克健、罗益峰、陈绍杰、徐坚等老师的文章,在此一并致谢!我们呼吁同行重视历史的记录,复杂技术系统的发展需要很长的时间,技术需要传承,文化与历史也需要。人人均可成为历史的记录者,我们赛奥碳纤维愿意为全国同行提供协助与支持,发表、整理与保存这些历史资料。
1.3.国外与中国发展史的比较
对比世界与中国的60年,我们能得到什么呢?总体印象,如同碳纤维老前辈中科院化学所原副所长吴人洁先生曾说过:我们就像一个刚醒来的人,打哈欠,伸懒腰,总也起不来床。这种“起不来床”的感觉,至今犹存。70年代的举国体制模式旨在解决军品问题时,国际上主流是在做工程化;80年代的引进模式时,国际上在做工业化与商业化;90年代我们进入最困难时期时,国际在并购与资源重整;2000年代,我们狂飙猛进时,国际巨头貌似平静,实则准备碳飞机、碳汽车及碳叶片的巨大应用;2010年代,我们在反思、在优胜劣汰,而国际在收获大应用带来的大收益与大发展。对照历史之下,其实我并未太遗憾,毕竟我们60、70、80年代的工业技术、企业化的水平与世界同期差距甚大,90年代的主格调是“下海经商”,肉吃得容易,谁还会去啃“硬骨头”?
如果要讲遗憾,就是2000年代之后,实验室技术简单放大,直接跃进工业化,缺少的工程化技术开发,在企业的工业装置上烧钱来做;技术无特色,落后技术重复建设。这其中,提供技术方盲目自信,对工程与工业缺乏基本的敬畏,企业家利用小农经济(或简单制造型经济)获得的成功经验用于碳纤维,对复杂产品技术缺乏思想与战略;社会对高科技招牌行骗缺乏辨别能力,尤其地方政府主导的项目多次被骗,浪费了大量的社会资源。这充分反映了整个社会“好大喜功,急功近利”的心态。当然,我们也可以说,这是中国经济进入工业文明阶段必然要交的学费。
从社会的层面,国际上,二战之后,大家均在大力发展科技强国,产业的社会环境相对稳定,英美日本之间的国际合作非常频繁,70年代,美国人创造的碳纤维高尔夫球杆,网球拍,启发了日本成为当时的碳纤维体育器材的强国,有效地支撑了产业的婴儿成长期;80年代,美国波音公司掀起了航空碳纤维的应用,又帮助碳纤维产业顺利完成了儿童期;同期,日本所有碳纤维企业均与美国公司相互转让碳纤维生产技术,帮助了美国碳纤维的成长。这说明,一个先进的材料的诞生与成长,需要全球高端应用的哺育的产业链与生态。
而我们的60-70年代,最初开始研究碳纤维的李仍元老师分别转战吉林辽源石油化工厂、中国纺织大学,安徽大学(80年代)坚持碳纤维研究;张爱萍将军主持的7511会议及之后的全国碳纤维大会战,算是一个亮点与高峰。改革开放的80、90年代,技术引进是政策主格调,但受制于“巴黎统筹条约”限制,只能引进世界三流技术;而同期,以经济建设为主,军工企业一片萧条,没有60-70年代重视军工的政策环境,严重缺乏应用动力。90年代末到2000年代,以台资为代表的碳纤维体育器材进入大陆地区,大陆的体育器材中玻璃纤维向碳纤维转移,这形成了新的发展动力。2005年后,军工企业逐步得到重视,对碳纤维的需求开始触发产业的发展。平稳的政治经济的发展,对特定产业发展至关重要。从60年代到今天,我们的碳纤维产业的主体是在国内打转,还没有融入国际高端产业链与生态圈。近几年,光威及澳盛的碳梁产品已经进入国际产业链,这是个非常欣慰的进步!
全球化的今天,严格意义的“自主创新”是不客观与不现实的,更多地是在人类成果基础上的集成创新或再创新。我们需要解决“短板”与“卡脖子”难题,练好技术内功,目的不是自给自足、自我封闭、与世界为敌。用更强的能力融入世界高端产业链及生态,是碳纤维企业发展壮大的必然之路。
1.4.全球碳纤维历史里程碑
下一页,我们对碳纤维发展中的发现及技术发明、重大应用突破以及产业政策选为里程碑事件。旨在让大众对产业的发展建立清晰的历史观。伟大有多个标准,其中之一是为世界工业文明做出里程碑意义的重大贡献,我想这应是当代中国碳纤维同仁的奋斗目标之一。
02
全球碳纤维市场
2.1. 全球碳纤维市场需求-年份
2019年的全球碳纤维需求数据,是根据国际上公认的增长率12%这个数据计算而来的,总需求量为103,700吨,这其中,中国的需求数据37,840吨是精准的,占了36.4%。假如国际需求量数字太小,中国的占比就会更大,这显然有悖于常识。毕竟我们很清楚,欧美日本是碳纤维需求的大国。
2019年的全球市场,除了如航空航天、体育器材、汽车、建筑补强、模塑混配等静电分市场的稳步发展之外,风电、压力容器市场增长迅速,这是驱动整个市场的重要引擎。另外,各大碳纤维公司均看好单通道飞机平台大量采用碳纤维的前景。这些均为市场注入了强大的活力。
2019年,全球碳纤维经历了60年的努力,把碳纤维的需求第一次做到10万吨以上。这是碳纤维复合材料产业链的复杂性决定的。当绝大部分核心技术被人类掌握之后,下一个10万吨的增长,时间会急剧缩短,我们预测2025年就会进入20万吨,2030年会进入40-50万吨。
2.2. 全球碳纤维市场需求-应用(千吨)
总量:103,700吨
总体来讲,绝大部分分市场,均是基于2018年基础,增长率为12%左右的增长:
航空航天(包含军工):2019的数据比去年增加12%,主要是波音787及空客350的产能的增加。
风电叶片:风电市场的碳纤维需求强劲,对比2018年增长了16%,主要依赖于风电巨头VESTAS强势驱动,其他风电厂家对需求的牵引还不明显。
体育休闲:每年按照4-5%的中速稳定增长。
2.3. 全球碳纤维市场需求-应用(美元)
总量:2,870百万美元
全球碳纤维的销售金额为28.7亿美元,比2018年25.71亿美元增长了11.6%,销售金额的增长并未与销售额的增长完全对应。主要原因是风电市场的对碳纤维数量虽然大,但由于单价较低,对总体金额贡献不显著。
2.4. 全球碳纤维市场需求-产品(千吨)
总量:103,700吨
模量的定义:
标准模量是指拉伸模量为230-265GPa
中等模量是指拉伸模量为270-315GPa
高模量是指拉伸模量超过315GPa
小丝束Small Tow(或常规丝束Regular Tow)1-24K(含)
大丝束Heavy Tow:大于24K的
巨丝束Giant Tow:大于100K
今年,我们希望引入巨丝束的概念。巨丝束并非新产品,这是目前腈纶的标准状态,另外,也是国际主流预氧丝的主要原料,更是诸多功能性碳纤维材料的首选,比如碳纸、碳毡、碳碳复合材料的预制体等。
巨丝束能否加入大丝束市场的竞争?这是完全可能的,从原丝角度,它可以借助腈纶行业近百年积累的工业基础与成本优势,原丝与腈纶生产实现良好的互动与互补。从碳化角度:必须从技术上解决巨丝束在碳化线的边际效益问题,比如超长的预氧化时间、低温炉排废等问题,这不是一个“灵机一动”的概念,是一个复杂的技术体系。
有人担心巨丝束后续成型工艺,这是思维局限在经典的小丝束成型工艺之中了。只要有高性价比的巨丝束碳纤维批量供应,产业链及应用就会很快开发出多种多样的成型工艺。
03
全球碳纤维供应
3.1.全球碳纤维理论产能-制造商
2019年,我们开始调整对产能的定义:之前,我们使用了“理论产能”的概念,只要有生产线,我们就认为具有理论产能,无论拥有这条生产线的企业是否僵尸、倒 闭,或者这条生产线是否落后、淘汰。现在,我们对产能的定义为“运行产能”,首先拥有生产线的企业是处于生存状态的,另外,对于依然生存的企业,他的生产线不是落后与淘汰的线,具备生产的能力。
由于上述统计的标准变化,我们消减了大量的、尤其是中国的“理论产能”,所以,2019年的运行产能为154,900,仅仅比2018年增加了100吨。
在2019年,全世界增加的产能也确实非常少,之前的扩产计划,要么在2018年就达成,要么在2020年达成,比如ZOLTEK在匈牙利的5,000吨产能,在2020年才能达成。Hexcel的巨大扩产计划,在2020年也会达成5,000吨;精功碳纤维、韩国晓星公司的2,000吨也是在2020年达成。
上述蓝色部分,注明了各家企业的扩产计划,到2020年,全球有大约11万吨的扩产计划。
3.2.全球碳纤维运行产能-区域
总量:154,900吨
世界碳纤维制造基地的竞争,充分反映了一个区域的综合投资水平,这其中,综合投资环境、生产要素,产业链生态是重点。
美国的综合投资环境很好,生产要素也具有全球优势,产业链生态完备(航空航天、汽车、风电等等方面的应用能力强),主要的问题是人工,尤其是熟悉纤维行业的操作工人,另外,工会也是一个外资头疼的问题。
欧洲的投资环境很好,产业链生态完备,在风电、汽车方面比美国的市场还庞大,主要的问题是生产要素中的能源与人工昂贵。所以,欧洲的碳纤维工厂只能生产高附加值的碳纤维。而处于匈牙利及土耳其的碳纤维企业,主要是因为腈纶工业基础的原因。
日本的投资环境、生产要素及产业链生态的优势都非常一般,所以,日本不是好的碳纤维投资地。他的超强的技术与融入全球产业生态的能力,全球寻求综合优势的区域建厂,让他保持了全球领导地位。
中国的投资环境,生产要素及产业生态链,总体上处于全球中等位置。无论是综合投资环境、生产要素,还是产业链生态,均还有大量的改革与提升的空间。
04
中国碳纤维市场
4.1. 中国碳纤维需求-年份
2019年中国碳纤维的总需求为:37,840吨,对比2018年的31,000吨,同比增长了22%,其中,进口量为25,840吨(占总需求的68%,比2018增长了17.5%),国产纤维供应量为12,000吨(占总需求的31.7%,比2018年增长了33%),2019年的中国市场的总体情况是:供不应求,无论是进口还是国产纤维。
2015(13.4%),2016(16.5%),2017(20%),2018(32%),2019 (22%)……2019年的增长率少于2018,其重要原因是供不应求,这些年的市场发展相当喜人。
对于国产的12,000吨销量,对于2018年的9,000吨,增长率33%,连续两年超过30%的高速增长,说明国产碳纤维的巨大进步,我们预计,在2025年前后,国产碳纤维有望超过进口。
与2018年的特点类似,中国需求的超高增长的主要驱动者是风电叶片市场:2019年风电消耗13,800吨碳纤维,对比2108年的8,000吨,增长率72.5%。2019年用于风电的国产碳纤维大约有1,000吨,而2018年是全部进口。显然,这几年跳跃式增长的风电叶片用量(2017:3,060吨,2018:8,000吨,2019:13,800吨),给国内碳纤维企业带来了难得的发展机遇。
4.2. 中国碳纤维需求-应用
总量:37,840吨
从上图中国/全球碳纤维应用对比图上,我们可以清晰地看到我国碳纤维应用的优劣势。13,800吨的风电应用绝大部分是为VESTAS服务的;体育休闲产品的制造一直是中国大陆与中国台湾的强项;我们的航空航天军工依然弱小,对产业规模的推动效应极低。当然,从另一个角度,这些今天的劣势也可能转化为我们发展的巨大空间。
4.3. 中国碳纤维需求-省份
总量:37,840吨
上千吨用量的省份有6家,山东与江苏由于风电碳纤维的消耗,把长期排名第一的广东省推到第三名。江苏省首次突破万吨规模。
总金额:822,421千美元
从消费金额来看,广东依然保持第一,山东尽管碳纤维消耗量远大于上海,但主要是低成本风电纤维,与广东、上海一道进入亿美元俱乐部。
4.4. 中国碳纤维需求-来源
总量:37,840吨
中国国产碳纤维2019保持着进步,市场份额从2018年的22.8%攀升到2019年的31.7%,可喜可贺。站在产业角度,我们需要清晰地看到:
从小丝束(常规丝束)方面:日本及其韩国的分公司,依然有近万吨的规模。他们在经典的应用市场的地位依然很牢固。
大丝束市场方面:主要是ZOLTEK体系(美国大部分+墨西哥+匈牙利)有大约6,000吨规模,台塑的5,669吨中大约有4,000吨大丝束市场,1,669吨小丝束市场;土耳其的1,324吨基本是大丝束市场,尽管其产品还不算真正的大丝束;英国的1,509吨是SGL的大丝束产品。
国内的12,000中,有大约5,000吨,其典型代表是精功碳纤维的25K产品,是跨越大小丝束市场的,大小丝束的市场的界限正在模糊化。
2019年,中国的市场需求:小丝束市场容量大约有18,000吨,其中国产7,000吨,主要竞争对手日本企业;大丝束市场大约有14,000吨,其中国产1,000吨,主要竞争对手ZOLTEK,另外有5,000吨左右(全部国产)的产品跨越在大小丝束市场上。
总金额:822,421千美元
这是向中国销售碳纤维及中间制品(预浸料+织物)的各国的价格水平。我们可以看到,日资及其韩国工厂的价格依然是最高的,美国的价格,是由于出口高性能预浸料与织物而拉高,其主流的出口产品是ZOLTEK的大丝束,与墨西哥、匈牙利是类似的。中国的价格,从2018年的18美元调低到2019的17.5美元,这是兼顾了高价格的航空航天应用碳纤维。
2019年,由于国际大丝束的供应量的短缺及中国产业控制成本的水平提升,中国价格与国际价格处于一个均衡状态,中国碳纤维及其制品批量出口已有可能。国家相关部委已经调整了出口退税率到13%,各厂家可以开始加大海外市场的开拓。
05
中国碳纤维产业
5.1. 中国碳纤维企业理论产能
2018年,我们不统计僵尸企业(超过一年不运行,且装置不稳定)。统计全国的理论产能为26,800吨。2019年,我们继续“挤水分”,统计标准从“理论产能”转换到“运行产能”,这其中,又消减了企业处于停滞状况的产能,以及存活企业的不再开车的老生产线产能,所以,2019年,中国的运行产能为26,650吨. 这个产能中,依然有一个大“水分”,一是有些企业实际生产3K,但根据12K来核算生产线产能。到2020年,我们希望把我国的产能数据,与国际接轨。
在26,650吨中,销量大约是12,000吨,销量/产能比为45%,对比去年的33.6%有提升。国际通常的产能比在65-85%。我国已经有企业的销量/产能达到77%的高水平。我们呼吁碳纤维企业:申报更合理的产能数据,加强对现有生产线的改造,使其能真正为企业创造更多价值。
2019年,我们也增加了原丝运行产能的统计,吉林化纤旗下的吉林碳谷目前专业从事原丝的生产。精功碳纤维采用碳谷原丝,进行碳化生产。这种专业分工与合作的模式,我们认为:在现阶段是先进模式、有利于产业发展的。
对于其他兼顾原丝与碳化的企业,我们按照碳纤维运行产能的2.5倍来概算的。
5.2. 中国碳纤维产业新发展
2019年,中国碳纤维产业的总体格调是:产销两旺+重磅扩产计划及资本重组。
继2018年的好的市场行情,2019年,市场需求旺盛,绝大部分碳纤维厂面临供不应求的态势。另外,这与我国碳纤维企业多年苦练内功、提质降本的努力也密切相关,产品得到市场的普通认可。
2019年到2020年初,有不少的企业宣布了扩产计划:
2019年2月,中复神鹰宣布了投资50亿元、在西宁建设20,000吨碳纤维的重大扩建工程;
2019年7月,光威复材与内蒙古包头九原区政府、丹麦维斯塔斯公司等签署协议,将投资20亿元在包头建设“万吨级碳纤维产业化项目”;
2019年中,吉林精功集团扩建2,000吨碳化线一条,预计2020年中投产;
2020年3月,中国宝武战略规划部与浙江绍兴柯桥区人民政府签署《产业发展合作备忘录》,这其中涉及到精功碳纤维产业。宝武集团可能大举进入碳纤维产业。
2020年3月,兰州蓝星碳纤维与山东省沂源县签订框架协议,开始二期项目建设,其中原丝50,000吨,碳纤维25,000吨。
2020年3月,上海石化发布公告,投资35亿元,建设24,000吨原丝,12,000吨大丝束碳纤维项目。
上述的企业都是严肃的企业,绝大部分扩产计划已经在实施之中。这些产能在今后几年的逐步释放,不仅会缓解中国碳纤维的供需矛盾,更会为中国碳纤维真正开启大丝束时代、低成本碳纤维时代奠定基础。而低成本的碳纤维的批量生产,一定会大力推动风电、汽车等应用的发展。
06
全球碳纤维复合材料市场
6.1. 全球树脂基碳纤维复合材料需求-年份
树脂基碳纤维复合材料的需求量,根据纤维在复材中65%的比例计算的,建立一个规模概念。
6.2. 全球树脂基碳纤维复合材料需求-应用(千吨)
总量:159.5千吨
6.3. 全球树脂基碳纤维复合材料需求-应用(10亿美元)
总金额:173.7美元
2019年,全球的复材收入格局与之前依然保持一致,航空航天一枝独大的格局。这其中包含了价格适中、用量巨大的商用飞机复材、也包含价格高企、用量中等的军用飞机及航天的复材。
尽管风电叶片的碳纤维消耗的吨数大于航空航天,但风电需要的是低成本碳纤维,同时,工艺也极尽简洁,采用拉挤工艺,工艺成本低廉。所以,全球只有大约6.9亿美元的收入贡献。
2019 年,我们对体育器材的复材收入有较大幅度的调整,之前的年份,我们只统计到预浸料,今年,如同航空航天,我们统计到了构件。所以,体育器材的收入大幅度提升到26.5亿美元。
6.4. 全球树脂基碳纤维复合材料需求-区域(10亿美元)
总金额:173.7亿美元
2019年,如前面所述,我们改变了体育器材的统计标准,体育器材的收入大幅度提升,由于全球大约90%的碳纤维体育器材在中国生产,这个巨大收入提高了中国的国际份额。
另一方面,对于全球的航空航天复合材料的收入中,我们调整了比例,分别为:北美45%(除了波音,没有还有大量的军机及航天使用碳纤维复合材料);西欧:25%,主力是空客的商用及军用飞机,以及英法的军用飞机;中国:15%,从用量上,我们的比例远不到这个数,但是,我们的航空航天复合材料的价格高于国际同行(国际上的航空航天复材,我们按300美元/公斤统计的),所以,复材收入比较大。
上述体育器材及航空航天复材的调整,让中国成为北美之后,第二大复材收入的区域。
6.5. 全球树脂基碳纤维复合材料需求-制造工艺
总量:159.5千吨
2019年,对于复合材料工艺,应用于风电叶片的拉挤碳梁发展迅速,另外,由于氢气瓶的兴起,缠绕工艺也较大的扩张。
从航空航天市场,经典的预浸料铺放层合+热压罐的工艺,也受到了严重的挑战:双通道飞机的数量相对较小,一款机型大约每月十多架的产能,而单通道飞机,每月则有上百架的规模。预浸料铺放层合+热压罐就不能满足单通道飞机的产能。所以,去热压罐的趋势是明确的,预浸料也会做相应的改变。
复材工艺不是不变的,反而,他应该随应用而改变。从风电碳纤维发展历史看,最早是采用经典的预浸料铺放,如此大型的叶片,要使用热压罐来排泡及固化,就太过昂贵,通常用真空袋工艺,出现了生产效率低下,产品性能差等问题。后来,借鉴玻璃纤维的工艺方法,多层织物真空灌注,但是不同于单丝直径较粗的玻纤的浸润性,要想灌透多层的碳纤维织物,织物本身必须留出树脂的流道,这就导致织物需要特殊的技术,带来了昂贵的成本,另外,织物很难保证在树脂的冲击之下,纤维的直线度,这就直接影响了复合材料的性能。当VESTAS采用了便于大规模生产的拉挤板之后,风电梁帽采用碳纤维的用量飞速增长,因为,这个路线体现了之前工艺不具备的性价比。
我们也确信:今天能满足各应用需求的,也不一定是最佳的工艺。一定还有其他更优的工艺有待开发。这就需要纤维、复合材料与应用端的紧密配合与联合创新。
6.6. 全球碳纤维复合材料需求-不同基体(10亿美元)
总额:215亿美元
我们发布这个图标,旨在提示大家不要忽略树脂基及碳基之外的其他基体复合材料,这些材料也是碳纤维复合材料大家族中的一员。
碳纤维作为一个优质的增强或骨架材料,除了上述的基体,我们相信,也会有新的基体与之结合,才能卓越的性能或功能。
2019年,整个树脂基材料中,热塑复合材料占了大约25%的比例,金额约为43.4亿美元。其中,绝大部分为非连续增强塑料,连续碳纤维热塑材料,我们估计市场份额为2亿美元左右。
6.7. 中国树脂基碳纤维复合材料需求-应用(吨)
总量:58,215吨
2019年,中国碳纤维复合材料的总量为58,215吨。给行业一个大致的概念。
体育复材依然保持着领导地位,但是风电复材增长迅速,增长率72.5%,超越体育器材仅仅是时间问题。
6.8. 中国树脂基碳纤维复合材料需求-应用(亿元)
总金额:427.6亿元
2019年,全国的碳纤维复合材料的产值为427.6亿元;
如前所述,我们调整了体育器材的统计方法,从之前只计算预浸料,到今年统计构件的收入。所以,体育器材2019年的复材收入为173.38亿元。
航空航天复材的产值,我们是按结构件来估算的,大约有150.8亿元人民币收入。
风电市场,我们是根据拉挤板和织物来估算的,大约有29.72亿元的收入。
07
复合材料应用发展趋势与展望
7.1. 航空航天应用市场
市场的发展趋势如下图:2019年对碳纤维的需求量为23,500吨。
航空航天市场的分市场份额(吨)如下图:
商用飞机无疑是碳纤维最有力的推动者,2019年三件大事:一是波音737系列停飞停产,国际航空器市场形成巨大的不确定性。二是新的单通道飞机平台,是否会双通道飞机B787、A350一样,广泛地使用碳纤维?三是数量是双通道飞机10倍的单通道飞机,会采用怎么的复合材料工艺?这些问题可多听航空专家的观点。从材料角度:新型的碳纤维,以东丽T1100G、赫氏IM10为代表,如果产能继续扩大,成本持续降低,将在主承力结构大量使用;对于热塑复材在主结构的应用,这是属于“下一代多功能机身验证”的性质,而航空的一代基本是20年时间;成熟的热固复合材料依然是飞机主结构的主力,除了现有的自动铺放+热压罐工艺,RTM工艺在A220与MC-21的经验基础之上,最可能成为单通道飞机的主选工艺。
7.2. 风电叶片应用市场
2019年,风电市场发展非常迅猛,国内预计今年内取消补贴,所以抢装依然延续。
根据彭博新能源财经公布的“2019年全球风电整机制造商市场份额排名”,从市场需求方面:
2019年全球新增陆上及海上风电装机容量分别为53.2GW及7.5GW,其中中国占据全球半壁江山,中国市场新增装机总容量为28.9GW(包含26.2GW的陆上及2.7GW的海上风电装机),全球市场占比48%;从市场供给方面:Vestas 2019年风机新增装机容量9.6GW,以18%的份额领先全球;全球十强中,有6家是中国企业。
2019年底与台塑周中洋高级专员交流,他提供了如下宝贵的咨询,供大家参考:“SIMENS GAMESA已经开始使用拉挤板制作样机;GE-LM的使用拉挤板的工艺在开发中;Nordex 在欧洲已经开始批量使用拉挤板生产叶片;远景风电已经开始用拉挤板制作样机。预计2020年全球风电对碳纤维的需求将达到31,272,两年之后,预计碳纤维需求大于44,139吨”。
尽管我们对风电的预测很乐观,但是,确实也存在一定风险:新冠肺炎疫情及风电发展的阶段性规律,有可能会让上述的预测不符或落空。
2019年,VESTAS在中国的动作频频,与澳盛扩大了碳梁的合作,与光威集团合作在内蒙扩建碳纤维工厂,然后又与吉林化纤集团(我国当前最重要的原丝基地)签订了战略协议,之前,与ZOLTEK,台塑,土耳其DOWAKSA的战略合作。我们大胆地猜测:VESTAS应该非常清楚碳纤维在未来风电产业的战略意义,他更清楚碳纤维的成本构成及未来发展走向。如此猜想之下,不免有点私心,替我们国内的风电巨头暗自担忧:不要等着哪一天,我们也认识到了碳纤维在未来风电的战略意义之后,突然发现,全球的碳纤维资源已经被对手控制了。希望我们的这些想法是“杞人忧天”。作为碳纤维的从业者,我们首先欢迎各类客户的光临。
7.3. 体育休闲应用市场
体育休闲市场十年来的需求发展情况如下,2019年的需求量为15,000吨。
体育市场的分市场份额如下:
先进复合材料体育器材强国计划
2019年,中国复合材料学会与国家体育总局装备中心牵头,汇集体育界及复合材料届专家学者及企业家,筹备“中国复合材料体育器材联合专业委员会”。这个“专委会”的工作任务是“集成国际设计经验、增强技术研发能力、国家助力品牌运营、竞技产业共同进步”。
在2019年11月28日,由中国复合材料学会主办的第四届中国国际复合材料科技大会(CCCM-4)在珠海隆重举办,期间,“专委会”筹委会举办了体育器材分会场,分会场包括了碳纤维体育器材的现场展示与体验和精彩纷呈的报告。
2020年的新冠病毒疫情为全球的体育运动蒙上了一层阴影:各类文体活动大幅度减少,相关的体育器材企业由于订单的减少,加上之前中美贸易战的关税,众多企业正备受煎熬。我们希望:中国复合材料学会及国家体育主管部门,在这个艰难时刻,依然砥砺前行,全力推动这个“强国计划”落实。
碳纤维复合材料一直是国家产业政策的热点,然而,我们一些主管部门,对航空航天复材应用青睐有加,对体育器材应用重视不够,甚至是轻视。我们已经多次上书:表达了“体育器材不仅是全球碳纤维产业的催生婆,更是中国碳纤维产业的压舱石”的客观历史与现实。
7.4. 汽车应用市场
对于汽车是否可能大批量应用碳纤维,这是目前行业最具争议的话题。我们也多次表达了全寿命周期的“轻量化价值”的观点。我们认为:这也是工业级碳纤维的大批量应用的“普世原则”,如果这个与其他现有材料的对比经济账算不明白,就没有批量应用的前提。
另外一个思维角度:碳纤维从来就在汽车领域存在,而且一直在发展,超级车(5000台)、超豪华车(50万台),豪华车(500万台),大众型汽车(大约1亿台)。目前,碳纤维在超级车及超豪华车用途很广,豪华车上也有一些碳纤维零部件。大众型汽车的应用的先驱是BMW I3 (尽管I3的销量只能算为豪华车类别)。我们认为:从目前绿色环保要求及碳纤维复合材料的发展水平综合考虑,碳纤维的主要市场是豪华车及以上市场。
对于新能源汽车,尽管电池昂贵,轻量化需求迫切,但是,只要是面向大众的,都很难支付碳纤维复合材料的高昂的成本,除非是功能性的必须需求,比如燃料电池的气态扩散层(GDL)及高压氢气瓶。
7.5. 压力容器应用市场
2019年,燃料电池汽车依然是世界的热点,对于碳纤维产业,主要的机遇是气态扩散层及高压氢气瓶。
气态扩散层(GDL):目前的主流工艺是碳纤维纸与织物作为基体材料,与高碳基体材料结合碳化,形成碳碳复材,进行疏水性处理之后,涂覆微孔碳微粉涂层。世界上主要的GDL厂家为东丽,西格里以及加拿大Ballard旗下材料厂。东丽与SGL这几天都在大幅度扩产,价格依然高企与供不应求。我国也有一些企业从事GDL的研发与小批量制造,但是,缺乏碳纤维材料的基础与支撑,这些企业是走不远的,希望我们的碳纤维企业要重视这个材料的研发,否则这个材料会成为我国燃料电池“卡脖子”环节,影响氢能源产业安全。
高压氢气瓶:首先有别于其他气瓶,燃料电池的气瓶,比如要实现规模经济的成本,美国能源部的技术路线图:碳纤维成本需要从现在的15美元/(kW•h),降低到8美元/(kW•h),换算成碳纤维成本,大约是需要实现T700或之上的性能,价格大约12.6美元/公斤(目前这个档次的纤维国际价格是18-22美元/公斤)。这对现有的碳纤维产业创新能力,会形成了一个巨大的挑战。
7.6. 混配模成型应用市场
混配模成型(Molding& compound)严格讲,不是一个应用市场,而是对工艺的描述,但由于这些工艺横跨的应用多,所以,把它归类成一个应用,便于说明。混配(compound)是指非连续碳纤维增强塑料,主要包括短切增强和LFT。玻纤D-LFT在汽车领域的广泛应用证明了这种复合材料形态的优势。模成型(Molding)主要是指片状模塑料Sheet Molding Compound-SMC,团状模塑料Bulk Molding Compound-BMC。由于回收碳纤维的加入,让这些非连续形态的,已经非连续形态加连续形态的混合结构,展现出一定的发展空间。
从事短切碳纤维增强塑料的,通常是改性塑料企业,比如SABI、RTP、POLYONE、COMPTEX、 POLYNT、广东金发科技等。他们通常是从碳纤维企业采购短切碳纤维,采用双螺杆混配造粒,然后在销售给应用单位做注塑成型。这其中有较多的问题:首要就是一个界面问题,碳纤维生产厂家通常是将B等品,通过二次上浆,加工成短切纤维,原始的环氧浆料通常还包裹在二次浆料之内,在后续的高温工艺中,环氧浆料会分解,对产品构成界面缺陷。另外一个重要问题,从碳纤维生产线到最终的注塑零件,中间环节太多,层层加码,导致最终用户的使用成本太高,这些都局限了短切碳纤维更广阔的应用空间,如对这个产业及生态链一定程度的重整,可以迅速扩大应用面及用量。
7.7. 建筑应用市场
本领域是一个广泛意义的建筑,不仅包括我们通常意义的建筑,也包括了建筑机械、桥梁、隧道及工业管道等,复合材料的应用主要有如下几个领域:1.建筑桥梁的补强:2.艺术型建筑的主体结构;3.建筑机械; 4.桥梁:5.抗震防震建筑:6.管道补强。
上述应用市场中,有80-90%的碳纤维用于建筑桥梁的补强。早期的加固用碳纤维产品完全依赖于从以日本东丽为代表的欧美日等发达国家厂商进口,直至21世纪初随着我国工业化进程发展,逐渐出现国产碳纤维布、碳纤维板等加固材料。现阶段基础设施加固材料领域除福瑞斯、西卡、东丽等国外品牌。以上海悍马为代表国产品牌正在快速崛起并逐步被国内外市场广泛认可,这些行业优质企业的崛起,也对曾经混乱的国内市场做了一场洗牌,“鱼龙混杂”的状况有了根本性的改变,市场集中度加强,更利于这个行业的持续健康发展。
7.8. 碳碳复材应用市场
2019 年,碳纤维在碳碳复材领域是平稳增长,主要市场是:刹车盘市场:国际的主要企业是:法国的Messier-Bugatti 公司、美国的Honeywell 公司、B.F. Goodrich 公司、Goodyer 公司和英国的Dunlop 公司。中国的飞机刹车盘主要有中航飞机股份有限公司西安制动分公司、博云新材、西安超码等厂商。航天部件:主要企业是国内航天的相关院所,碳碳复合材料以其优异的性能成为大型固体火箭喉衬、发动机的喷管、扩散段,端头帽等的首选材料;热场部件:国际企业是德国的SGL公司,日本的东海碳素公司等;国内从事碳碳复合热场材料的单位包括西安超码、航天睿特、博云新材、中南大学、南方搏云等。预制体是碳碳复材重要的制造环节,国内的主要企业是:中材科技南京玻璃纤维研究院、江苏天鸟高新技术有限公司、天津工业大学复合材料研究所、江苏飞舟高新科技材料有限公司。
上述市场中,最大的热点是热场部件的高速增长,据国内预制体龙头企业,江苏天鸟缪云良总经理介绍:国内市场2019年增长了25%。
7.9. 电子电气应用市场
2019年,电子电气领域,市场在平稳增长。
首先是功能性应用领域:短切碳纤维增强塑料具有防静电、电磁屏蔽等功能在复印机、打印机、数码相机、数据传输电缆接头等产品早已经有成熟应用,对比其他的如炭黑、金属等类似材料,碳纤维增强塑料的成本降低,会带来这个市场的稳定扩展。
力学增强方面:主要的产品形态有长碳纤维增强塑料(LFT)和连续碳纤维增强材料。LFT其实是一个介于短切与连续之间、兼顾了成本与性能的一个很有前景的产品形态,然后,热塑界面的问题,如何在塑料中保持较长的长度及均匀分散问题,这些技术障碍阻碍了这个产品的更广阔的应用。连续碳纤维增强材料,主要是用于轻薄笔记本的壳体,其中有经典工艺的热固壳体,也有热塑壳体。
2019年,电子电气领域对碳纤维需求重大增长是:液晶平板显示器生产过程的机器人的轻量化。大面积平板玻璃在生产线的转运及储存一直采用碳纤维牙叉,这是高模量沥青碳纤维的天下,就是要防止移动平板玻璃过程中的振动,目前这个思路已经延展到支撑牙叉的结构上,利用碳纤维复材的轻质高强,更好地服务于平板玻璃搬运的平顺。
5G基站对材料的需求也是行业的热点,对于碳纤维材料,除了有特殊轻质高强要求的通讯塔建设和局部的需要电磁屏蔽的部件,对碳纤维复合材料有需求可能,我们还没有看到其他的机遇。
7.10. 船舶应用市场
目前,船舶领域对碳纤维的需求主要是:竞赛类船舶、超豪华游艇、高速客船及军事用途的船舶。多年来,除了竞赛类船舶,不断追求复合材料新工艺及新技术,其他船舶的发展缺乏热点。
人类在探索海洋资源时,有一个从近海到深海到超深海的过程,比如海上石油的开采,近海还可以采用陆上固定井的思维,到深海及超深海,就不得不发明各类特殊的船舶,以获得更好的经济性。同时,深海的特点,对传统陆上采用的金属材料会有很大的挑战,这就为碳纤维复合材料提供了巨大的机遇。
除了海洋石油,近几年,海上风电蓬勃发展,尽管目前主要在近海的浅水,借用陆上风电的思路,做固定塔筒,我们相信,随着近海资源的消耗,或者技术的变革,漂浮式风电一定会成为必然。漂浮式风电与漂浮式石油平台还是有一定的区别,这就需要船舶系统开发新型的风电漂浮平台,如何固定这些平台,可能会为碳纤维复合材料带来新的应用机遇。
7.11. 电缆芯应用市场
2019年,我们统计的全球需求是1,100吨。
2019年,美国CTC公司授权了巴基斯坦的特许制造商,继续扩大其市场应用。据CTC网站消息,到2019年,他们总共在全球建设了750个ACCC导线项目,总共完成的电缆里程接近10万公里。2020年初,该公司宣布ACCC InfoCore™系统和首次商业部署,该系统可快速、准确地确保ACCC® Conductor的正确安装。
国内电缆芯方面,2019年国家电网的一条电缆发生断裂事件后,整个国电网的建设计划暂停,这对行业产生了一些不良影响,2020年有望恢复重新建设。中复集团前董事长张定金先生介绍:整对电缆芯品质问题,中复集团采取了两个创新工作,一是在电缆芯预埋光纤,可以实时监控电缆芯的品质情况,另一方面,对于CTC推崇的大直径、单根芯材,变成多根、小直径芯材的组合体,这样可以增强柔性,同时减少可能破化的扩展,组合体依然可以保持设计强度,正常服役。他们正在验证上述的技术创新,一旦达成,将促进中国电缆芯市场的发展。另外,同样的思路,也为碳纤维桥梁缆提供新的机会。”
7.12. 其他应用市场
轨道交通
这几年,在中车的牵引之下,利用碳纤维复合材料对轨道交通做轻量化的研发工作进展很快并卓有成效。在德国举行的柏林国际轨道交通技术展(InnoTrans 2018)上,中国中车正式发布新一代碳纤维地铁车辆“CETROVO”,同期,中车长春轨道客车研制的复合材料轻轨车-武汉东湖“光谷量子号”在长春轨道交通展上首次向公众展出。2019年底,新一代碳纤维地铁在广州试跑。中车青岛四方与国内多家碳纤维复合材料企业合作,共同开发车头罩,设备舱裙板等构件。轨道交通,尤其是高铁的的工况是非常复杂的,所以,需要长时间积累相关的数据与经验。短期内,很难对碳纤维的需求带来较大增量。这是一个具有中国特色、重大意义的碳纤维复合材料产业链及生态,社会各界应充分重视这个应用生态的开拓,长期坚持,必有巨大回报。
碳纤维功能材料
如上面说提及的燃料电池的气态扩散层(GDL),碳纤维的功能性应用将会有巨大的发展,尤其在储能电池领域,碳毡(石墨毡)作为液流电池的电极材料,已经在广泛使用;在碳毡的基础上生长碳纳米管,替代铅酸电池的铅板电极,焕发了古老铅酸电池的青春,正在快步工业化与商业化;锂离子电池中,已经有很好的多微孔碳纤维材料的实验室产品,可以提升锂离子电池的能量密度。
08
观察与思考
1. 对中国碳纤维产业发展的基本看法
1.1.“小丝束”与“大丝束”并非技术上的高低,而是商业驱动的不同品种
制备小丝束与大丝束的技术有较大的不同:从我国企业从事小丝束的研发过程看,3K是最容易的,到6K和12K难度就增加。而48K或以上的大丝束甚至巨丝束,无论是聚合纺丝,还是氧化碳化,主要由于高通量,就带来很多复杂的技术与工程问题。企业选择大丝束品种重要的目标是追求低成本和大规模工业应用,这仅仅是一种商业的考虑,与技术高低没有任何关系。这个道理,就如同汽车行业的“法拉利”与“大众”,各具商业优势的品种而已,不存在高低之分。
数十年来,我国碳纤维跟随日本企业(尤其东丽)的技术路线,在小丝束制备上,取得了较大的成效。然而对于大丝束的制备,总体系统技术层面,我国还基本还是“门外汉”,尚有大量的装备及工程方面缺乏经验。而市场的需求是汹涌的,我们应奋力发展大丝束制备系统技术。
对于航空航天的市场,性能是首要因素;对于大多数碳纤维传统民用市场(包括民用航空航天),性价比成为首要因素;对于大规模需求的前景市场,比如风电、汽车、轨道交通,价格是首要因素。这三类应用代表三种商业驱动模式,一定会催生出各具商业价值的碳纤维品种。只有我们的碳纤维产业能分别满足上述三类市场的需求,形成各自规则的商业生态,我们的产业才能走出“千军万马过独木桥”,“小、散、乱”,貌似产能过剩的被动局面。中国的碳纤维企业的发展,一定要克服“抄作业”的毛病,看到某家的某个产品效益好,就一窝蜂上去干成“白菜价”,这种貌似自由市场竞争的行为,本质是一个“郊区农贸市场”的认知水平,形成自己独特的模式与效益,行业共荣,才是正道!
1.2.低成本技术是一个系统工程,大丝束只是选项
碳纤维的低成本技术系统,主要包括:A. 新型碳纤维前驱体化合物的开发,B. 碳化结构形成机理及制备技术,C. 改良的制备技术,D. 工程及工业技术。
1.新型碳纤维前驱体化合物的开发:日本NEDO在聚丙烯腈聚合时完成了热稳定化,原丝生产线出来的纤维是预氧丝,原料的替代方面,主要思路有沥青、聚烯烃及木质素等,目前并未有重大突破。
2.碳化结构形成机理及制备技术:从丙烯腈到碳纤维的高效制备是当前的核心技术,目前的制备技术的能耗与排放巨大,基本是“杀敌一千,自损八百”的水平。这就隐含着巨大的技术进步空间。
3.改良的制备技术:主要是指提“束”(大丝束)与提“速”(高速)。这些手段的用意是:提高生产线的通量(产能)来摊薄成本。这其中隐藏着一个重大的设定:投入及增产的边际效益问题,等投入大于或等于增产效益时,这类改良技术就会停止,比如4米以上的宽幅碳化线的增产边际效益如何?还有待验证。
4.工程及工艺技术:比如适应于接丝与连续生产的原丝包装,保证更长运行时间的排废技术,装备厂房公用工程的折旧成本,整线的节能耗降成本,工程建设周期成本,工艺、操作及管理成本,产业链集成成本等。这些工程技术对低成本的贡献巨大。
从上面的低成本技术系统中,可以发现:A与B无疑是底层技术,这是从根本上解决了低成本的问题;而C中的“提束提速”是基于现有的底层技术上的改良选项;D工程及工艺技术是产业的工业保障。如果产业需要产生重大创新,应该加强研究A、B类的底层技术的研究,这儿蕴藏着低成本技术的宝藏。
1.3.低成本技术是大小丝束共同需要的基础技术
“低成本技术是高技术”,低成本技术不是“粗制滥造”,人类的任何科技产品,尤其是新材料,在其发展过程之中,通常会经历一场深刻的“低成本技术革命”的洗礼之后,方能广泛地造福人类。低成本技术体系与生产要素价格的高低没有关系,是一个纯粹的技术行为;它是针对纤维制备过程中所有的成本要素的降低,这个降低过程并不是以牺牲性能与品质为代价的,而是通过技术手段的增效降本;低成本技术本质上是人类对碳纤维制备的科学机理的更深刻的认识,用更高效节能的方式实现同样或更高的目标,本身就是科技进步的重要标志。日本东丽在日本的工厂,其所有生产要素的成本均高于中国,尤其是人工,但东丽的制备成本相对国内是有优势的,其核心就在于东丽领先全球的“低成本技术”。
1.4.